Nueva familia iterativa de sexto orden para la resolución de ecuaciones no lineales
DOI:
https://doi.org/10.69821/DISCE.v3i1.69Palabras clave:
Ecuaciones no lineales, análisis de convergencia, método óptimo, recurso computacionalResumen
Introducción. En este manuscrito, se introduce una familia iterativa multipaso diseñada para resolver ecuaciones no lineales.
Materiales y métodos. Se investigó profundamente el análisis de convergencia de esta nueva familia iterativa una vez definido el método multipunto y se demostró que su orden de convergencia fue 6 con su orden de convergencia computacional aproximado (ACOC) de 5.98 en la mayoría de las pruebas experimentales.
Resultados y discusión. Esta familia es derivada del esquema de Newton pero incluye una función ‘’congelada’’ o peso para añadir un tercer paso en donde se usó inicialmente como primer paso el método iterativo de segundo orden de Newton para disminuir el número de evaluaciones funcionales.
Conclusiones. Finalmente se realizó con un conjunto de ecuaciones no lineales de investigaciones recientes pruebas numéricas donde se evaluó la eficacia de esta nueva familia verificando la cantidad de iteraciones para encontrar la solución aproximada de la ecuación no lineal en comparación con otros métodos ya propuestos de orden 6 obteniendo un costo computacional menor lo que permite a este esquema iterativo ser eficiente y novedoso.
Descargas
Referencias
Ali, K. K., Mehanna, M. S., Shaalan, M. A., Nisar, K. S., Albalawi, W., & Abdel-Aty, A.-H. (2023). Analytical and numerical solutions with bifurcation analysis for the nonlinear evolution equation in (2+1)-dimensions. Results in Physics, 49, 106495. https://doi.org/10.1016/j.rinp.2023.106495
Alipour, S., & Mirzaee, F. (2020). An iterative algorithm for solving two dimensional nonlinear stochastic integral equations: A combined successive approximations method with bilinear spline interpolation. Applied Mathematics and Computation, 371, 124947. https://doi.org/10.1016/j.amc.2019.124947
Caporale, A., Vaccaro, M. S., Barretta, R., & Luciano, R. (2025). Nonlocal elastic plate problems via iterative method. Mechanics Research Communications, 150, 104538. https://doi.org/10.1016/j.mechrescom.2025.104538
Caprais, M., & Bergeron, A. (2025a). An iterative scheme to include turbulent diffusion in advective-dominated transport of delayed neutron precursors. Annals of Nuclear Energy, 215, 111251. https://doi.org/10.1016/j.anucene.2025.111251
Caprais, M., & Bergeron, A. (2025b). An iterative scheme to include turbulent diffusion in advective - dominated transport of delayed neutro precursors. 10.
Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2010). A family of iterative methods with sixth and seventh order convergence for nonlinear equations. Mathematical and Computer Modelling, 52(9–10), 1490–1496. https://doi.org/10.1016/j.mcm.2010.05.033
Erfanifar, R., Sayevand, K., & Esmaeili, H. (2020). A novel iterative method for the solution of a nonlinear matrix equation. Applied Numerical Mathematics, 153, 503–518. https://doi.org/10.1016/j.apnum.2020.03.012
Ibrahim, A. H., & Kumam, P. (2021). Re-modified derivative-free iterative method for nonlinear monotone equations with convex constraints. Ain Shams Engineering Journal, 12(2), 2205–2210. https://doi.org/10.1016/j.asej.2020.11.009
Kodnyanko, V. (2021). Improved bracketing parabolic method for numerical solution of nonlinear equations. Applied Mathematics and Computation, 400, 1–6. https://doi.org/10.1016/j.amc.2021.125995
Kozitskiy, S. B., Trofimov, M. Y., & Petrov, P. S. (2022). On the numerical solution of the iterative parabolic equations by ETDRK pseudospectral methods in linear and nonlinear media. Communications in Nonlinear Science and Numerical Simulation, 108, 106228. https://doi.org/10.1016/j.cnsns.2021.106228
Li, H., & Guo, Y. (2020). Numerical solution of coupled nonlinear Schrödinger equations on unbounded domains. Applied Mathematics Letters, 104, 106286. https://doi.org/10.1016/j.aml.2020.106286
Mohanty, R. K., & Niranjan. (2024). A class of new implicit compact sixth-order approximations for Poisson equations and the estimates of normal derivatives in multi-dimensions. Results in Applied Mathematics, 22, 100454. https://doi.org/10.1016/j.rinam.2024.100454
Nirmala, A., & Kumbinarasaiah, S. (2024). Numerical solution of nonlinear Hunter - Saxton equation, Benjamin - Bona Mahony equation, and Klein - Gordon equation using Hosoya polynomial method. Control and Optimization, 26.
Özban, A. Y., & Kaya, B. (2022). A new family of optimal fourth-order iterative methods for nonlinear equations. Results in Control and Optimization, 8(July). https://doi.org/10.1016/j.rico.2022.100157
Pokusiński, B., & Kamiński, M. (2023). Numerical convergence and error analysis for the truncated iterative generalized stochastic perturbation-based finite element method. Computer Methods in Applied Mechanics and Engineering, 410, 115993. https://doi.org/10.1016/j.cma.2023.115993
Rawani, M. K., Verma, A. K., & Cattani, C. (2023). A novel hybrid approach for computing numerical solution of the time-fractional nonlinear one and two-dimensional partial integro-differential equation. Communications in Nonlinear Science and Numerical Simulation, 118, 106986. https://doi.org/10.1016/j.cnsns.2022.106986
Sharma, E., & Panday, S. (2022). Efficient sixth order iterative method free from higher derivatives for nonlinear equations. Journal of Mathematical and Computational Science, 1–13. https://doi.org/10.28919/jmcs/6950
Solaiman, O. S., Karim, S. A. A., & Hashim, I. (2021). Dynamical comparison of several third-order iterative methods for nonlinear equations. Computers, Materials and Continua, 67(2), 1951–1962. https://doi.org/10.32604/cmc.2021.015344
Thangkhenpau, G., Panday, S., Panday, B., Stoenoiu, C. E., & Jäntschi, L. (2024). Generalized high-order iterative methods for solutions of nonlinear systems and their applications. AIMS Mathematics, 9(3), 6161–6182. https://doi.org/10.3934/math.2024301
Usman, M., Iqbal, J., Khan, A., Ullah, I., Khan, H., Alzabut, J., & Alkhawar, H. M. (2025). A new iterative multi-step method for solving nonlinear equation. MethodsX, 15(March). https://doi.org/10.1016/j.mex.2025.103394
Zhanlav, T., & Otgondorj, K. (2021). Higher order Jarratt-like iterations for solving systems of nonlinear equations. Applied Mathematics and Computation, 395, 125849. https://doi.org/10.1016/j.amc.2020.125849
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2026 William Alexander Ávila Aguilar, Marcos Chacón Castro , Freddy Geovanny Saldivia Monserrate (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato para cualquier propósito, incluso comercialmente.
- Adaptar — remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente.
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
